Good Food

Every day we make beautiful walks, just where we moor or drop our anchor. As a bonus, we find amazing food on our way.

The picture above shows a selection of vegetables, herbs and flowers from our friends’ garden in Calstock. This was in August last year.

In September, in Brittany, we were stunned by the delicious, fragrant passionfruit and the quinces that nobody seemed to want. Which is weird, because quinces are perfect for stews and marmelades.

The flower  of the passion fruit…

….and the fruit itself. You pick the ripe ones from the plant, it is the most delicious fruit you can ever get.

Bunches of quinces, ripe on the trees and inviting to pick,

In October, in Portugal , we saw a gem-like fruit that seemed much too beautiful to eat….

it was the fruit of the Medronheiro (Strawberry Tree).

From November, we walk in the area of the Guadiana river, the border river in the south of Portugal and Spain. Winter is actually a beautiful season to walk. It is pleasantly cool with 15 degrees Celsius.

In area around the Guadiana we see lots of almond trees along the roads and in the fields, with plenty of almonds.

You have to try first before picking them; some trees have sweet almonds, but some bear the bitter ones that you should be careful with. 

The olive trees were heavy with olives in all varieties. 

We met fellow sailors who have produced their own virgin olive oil. It took them three weeks to obtain 2 liters, but: it can be done. 

For cooking and making infusions you can find fabulous herbs anywhere. 

Fresh sage


Ever since we got on the Guadiana River, we have been seeing the orange trees, loaded with fruit. Harvesting season runs from September to March, so there is no hurry.

Walking along the Guadiana river, the orange trees invite you to pick a piece of fruit. 

In Februari, after some rainfall,  the oranges start falling off the trees.  And if no one comes to pick them up, they rot in the fields.

These are the most juicy oranges in the whole world. And water’s always near, which is important according to a widespread European fairy tale on oranges. So, in the open fields, we pick and eat as many oranges as we like. We cannot think of a more sustainable way to stay healthy.

Sun power for your shower – The spiral heater

Last week you read about the shower bag. Now we describe a system with the Spiral Heater that you can build in on board, even by yourself.
It is a rather simple system, with some technical things, so sometimes boring. But we have a cliff hanger: would the story end up with a beautiful model under the shower head? Male or female?

2.    The spiral heater

The cupper spiral is just visible through the double skinned insulation plastic, that prevents that the heat gets lost.. The sunrays go through it, heat the spiral and the water circulatiing through it.

You can make a 30 cm diameter spiral of thin cupper pipe. This solar spiral heater consists of two spiral pipes connected to each other. It is not that difficult to make. Just buy a 30 meter roll of cupper pipe 6 mm that a plumber uses for oil and butane gas lines. This pipe is rather flexible and with a bit of feeling for the material you ‘mould’ the line in a spiral without kinks. Connect the outside end of one to the outside end of the other, and the flow of the one runs against the flow of the other, which is most effective. In the middle you have to ends: one is the inlet and one is the outlet.

How the system schematically works, with the spiral heater, boiler and taps, is shown in this film.

Interested? Here is the schematic drawing and the description of the complete system.

In general: the Pressure pump keeps the water system under pressure, so the (cold and hot water) taps can give water. The circulation pump circulates the water first through the spiral heater, to the hot water tap and into the top of the boiler, pushing the cold water under into the circulation system.

We start under with the water tank containing water.

A pressure pump pumps water in the system: the water lines, the spiral and the boiler. From now you can use the cold water tap and the hot water tap (although the latter one is still cold now, but wait).

Then, a little circulation pump pumps the water into the spiral heater. The sun heats the spirals, so the water gets hot.

The water leaves this spiral heater through a line going along the hot water tap further to the boiler. It will be led into the top of the boiler. Hot water is lighter than cold water, so the hot water will be stacked on top. The cold water goes downwards. Down in the boiler there is the outlet, so from there the cold water will be sucked up by the circulation pump. Then the water is pumped to the spiral heater for a new circulation. Easy.

Only one safety issue. If water becomes hot, it expands. The pressure would get too high and it would damage the system. Therefore, there is an overpressure valve mounted in the system. It opens when the pressure becomes too high. Mount it just after the pressure pump. The water coming out, can be led to the water tank, or directly before the pressure pump. (this is not drawn here).

 This pump is a typical robust circulation pump. It works on 12 Volt. It switches on when the temperature of the boiler is lower than the temperature of the spiral heater.

Regulating the heat of the water

The pressure pump has a pressure regulation: if the pressure drops, the pump starts running till the pressure is (mostly) about 2 Bar, the minimum water pressure for drinking water.

The spiral heater and the boiler each have a temperature sensor:

  • If the temperature of the heater is higher than the temperature of the boiler, the circulation pump will start running.
  • If the temperature of the heater is lower than the temperature of the boiler, the circulation pump will stop running.

The shower test

It works!

You can increase the seas’ CO2 absorption

Clean Wave

We must stop the poisoning of the coral reef and the plankton in the oceans. If we do that, plankton and ocean life will restore itself. You can increase the seas’ CO2 absorption. This restores the oceans capacity to solve the CO2 problem.

This unknown world of plankton has a great capacity to restore itself. But, it needs help.

Stop or at least reduce using toxic chemicals

You probably already know that eating organic food and minimizing your energy consumption -like we do on the Ya– helps to make a better world. Perhaps you did not know that some chemicals can have a dramatic effect on climate change. However, the good thing is: you can do something very effective about it yourself. Yes, it takes some effort to read the small letters on the everyday products you use. Also, it will take some effort to find alternative products. But it’s worth it. Take a deep breath, here’s the list:

  • Oxybenzone or benzophenone-3 or BP-3 is top on our list because it’s really bad. This hormone-disrupting UV filter is used in sunscreen and many products exposed to sunlight. For example cosmetics, plastics, paint, rubber, cleaning agents and detergents.
    • Don’t buy sunblockers or other products containing oxybenzone. Tradenames are Milestab 9, Eusolex 4360, Escalol 567, Kahscreen BZ-3. Bring them back or throw them away responsibly. Use alternatives (hyperlink, there’s plenty of them. Or, for example, make your own sunscreen.

1 drop of Oxybenzone from a bottle of sunscreen, can kill 140 billion tonnes marine plankton. 70 thousand tonnes would destroy all life in the oceans, and the global production is in excess of 300 million tonnes. Oxybenzone does not stop working when in the water. They change the wavelength of the sunrays into heat rays and thus kill the coral reefs. The reefs are necessary for life in the oceans.

  • Other harmful chemicals used in cosmetics: this list is very long and you will not like what you see. However, please take some time and check for example on
  • Dioxins mostly exist as by-products of industrial processes such as bleaching paper pulp, pesticide manufacturing. Most pollution comes from combusting electronics and plastics, and waste incinerations.
    • Don’t buy bleached paper. Don’t use pesticides. Reuse and repair your electronics, before you remove them. Try to produce as little waste as you can. Buy only things you love and need and use them carefully.
  • Methyl mercury can be found in nature, so also in coal and biomass, combusted in power plants. Only in the US the incinerators emit 80 ton per year. 
    • Stop using electricity from coal and biomass power plants.
  • DDT Dichloro-diphenyl-trichloroethane) kills marine life. It is meant to kills insects, such as the malaria mosquito. It is advised to use as minimal as possible, but it is not forbidden.
    • If you need to use it (malaria), make sure it doesn’t get into the marine environment (water waste treatment).
  • Plastics contain chemicals and the chemicals mentioned above ‘stick’ to it in the environment. They disintegrate into microplastics and accumulate in organisms that eat it. Also, chemicals ‘stick’ to it. 
    • Reduce your plastic consumption (bags, small bottles etc.) Re-use whatever plastic you have. Make sure it doesn’t end up in the environment. If you can, pick up the plastic waste you see on your way and put it in the garbage.
  •  In 2009 all countries (Stockholm Agreement) agreed to stop using the next substances: 
    • PCB’s (or Polychloorbifynil), used as electric isolation fluid, cooling fluid. 
    • PFOS (Perfluorooctanesulfonic acid), makes fabrics water repellent, for example raincoats.
    • PBDE’s (Polybrominated diphenyl ethers), used for flame retardants. 
    • Has this Stockholm Agreement been translated in your national laws? If not, you can write your MP about it.

The good news: if we succeed, the plankton will restore itself

If we can take the brakes off the ecosystem by allowing the plankton to grow, then recovery could be really quick. It would take ten to twenty years for plant biomass to double on land. But, it just takes only 3 days for biomass to double in the oceans! 

Trees take many years to remove CO2 from the atmosphere 

Marine Algae take just a few days to remove CO2 from the atmosphere

Marine Bacteria take a few hours to remove CO2 from the atmosphere and grow 1,000,000 times quicker than terrestrial plants.

And the damage done? Plankton that is killed by toxic combinations end up on the ocean floor. We don’t know the impact of the plastic and toxic chemicals on the sediment. But, it may be that the chemicals and plastic could be locked out and no longer create a hazard. This would be a good news story and would give hope for the future of the oceans.

Start now

If we follow the current strategy of climate change mitigation, we will be too late to stop the acidification of the ocean. In ten years, the pH will reach 7.95 which will cause run-away climate change. If we just could stop the use of Oxybenzone, we could probably gain an extra 10 or 20 years to fix the ocean pollution problem. We must do this now because in a decade it will be too late; the oceans are going to be too acid. And we need healthy oceans to stop climate change.

If we stop toxic chemical pollution and clean up our plastic environment, we will be able to develop a sustainable ecosystem and reverse the effects of climate change. You can stop being worried and start taking care. Do what you can yourself. Use your consumer-power. Help your government reach the climate-goals and question them about the chemical pollution. Create a clean wave!

Motivation is plenty. It is good for the economy. It prevents a climate migration of millions of people. And, if we start now, we can restore the health and beauty of our planet. 

This is the last in a series of articles based on the presentation and articles by Dr. Howard Dryden from GOESfoundation and Diane Duncan from Clean Waterwave Foundation.  For more detailed information and insight please check their websites.

You can read the previous articles on our website:

Why plankton has decreased by 50% in 50 years 

Two causes of climate change 

Ya hears a warning from the ocean 

Formula 1 racing? It fuels fossil freedom.

A guy named Roy would like to see the Ya in Portimao. Sunday afternoon was our only option. He said: “Sorry, I have got a ticket for the Formula 1 races here. Yes, I know, it is a combustion spectacle of fossil fuels, but I love it.” We think Formula 1 racing can actually fuel fossil freedom and we will show you why in examples from sailing formulas.

Max Verstappen can do over 300 km/h in his 2,5 litre Formula 1 bolide.

Formula 1 racing has always been good for the reduction of fossil fuels. The competition must be fair, so there are strict regulations for the cars. For example, the cylinder volume is limited to 2,5 litres. And it is anyway better to use less petrol, because that saves you pits stops. 

Where it all started

We see the first development in the history in sail races. It was in 1660 that the Dutchmen gave the young prince Charles II of England a ‘jaght’, which he called ‘yacht’. It was a rather wide, flat bottom boat with lee boards, ideal for the shallow Dutch waters. The Dutchmen organized regattas with these oversized dinghies. 

This ‘Tjotter’ is a small but typical offspring of the 17th century Dutch ‘jaght” that was presented to prince Charles II. (source: Wikimedia)

When king, Charles started experimenting and built several yachts. During the following centuries, the kings and noble men started racing against each other, mostly near the Isle of Wight. The waters are deep there, and you could see the shape of the yacht change. The ships became slimmer and the length extreme, because they experienced that with more length you could sail faster. It would not capsize, on the contrary, because they let the hull flow with smooth lines into a long keel, with lead or cast iron under it. 

Where it got shape

All yachts were unique. So, they started making formulas containing all pros and cons, expressed in handicaps. For example, the longer the length, the bigger the handicap. The Formula of the famous America’s Cup is perhaps the most famous, and for sure the most discussed example. 

The handicaps used in the sailing Formulas lead designers to make specific choices. For example: with more length, or more sail, you can sail faster, but in the formula, it leads to a higher handicap. So, these are the variables a designer can play with. Which they did. And therefore, from the time these formulas became popular, all designers and wharfs started designing yachts that could get the most speed with the least energy. This is where the path to fossil freedom starts.

A painting of a race for the 1893 America’s Cup. These yachts are the typical 19th century yachts the (English) upper class raced on. Lots of sail, lots of waterline length, and the hull built down in a smooth S-shape into a long keel. They went fast (source Wikimedia).

Until the 20th century the design of a yacht was based on feeling and experience. But then rationality came in. Naval architects started gathering data. They learned from science in aerodynamics and hydrodynamics. They used the data for modelling, etcetera. 

Innovations in Formula racing lead to energy efficiency

For over a century, everybody believed in the smoothly shaped longkeeler. And suddenly there was the finkeel of Sparkman and Stevens. Instead of a long, full hull keel, they designed a deep, short keel, a so called fin keel. With this keel, the yacht had less drag, less resistance, and it could sail faster and higher to the wind. Nowadays, most boats are built with fin keels. Likewise, the centreboard of the Ya has a short and deep fin. Completely down, it draws 2.7 meter.

In the late 30’s, the naval architects of Sparkman and Stephens designed the first fast sailing yachts with a fin keel. The Cape Cod Mercury 15 is such an example. It sailed faster and higher than the longkeelers (source: Wikimedia).

The Formula of the America’s cup leads to extreme ships. They manage to get an enormous efficiency. With only foils through the water and the hull ‘flying’ over the water, they make 5 times bigger speeds than the old fashioned longkeelers. And like the fin keel of Sparkman and Stevens, the foil is now finding its way into the yacht design.

We see the same with the Formula 1, 2, 3 and other racing sports. The tires for example, made great improvements and that is what we now have under our cars. They save fuel. The shapes of our cars are aerodynamic now and save fuel. Many small and big improvements under the hood find their origin in the races under these formulas.  

So, Roy: enjoy your Grand Prix in Portimao: Formulas like these fuel the development to fossil-freedom.